MATHEMATICS geometry and trigonometry

ERRATA

MATHEMATICS FOR YEAR 11 (Fifth Edition) GEOMETRY AND TRIGONOMETRY

Fifth edition - 2012 reprint

page 316 EXERCISE 5B.2

page 412 ANSWERS EXERCISE 1B.1

7 **b** $\cos(180 - \theta) = -\cos\theta$

page 413 ANSWERS EXERCISE 1H

9 $\frac{1}{4}$ 10 **a** 6 cm² **b** 6 cm² 11 **a** 21.3 cm² **b** 30.7 cm²

page 428 ANSWERS EXERCISE 3J.1

9 343.1 kmph, 092.93°

ERRATA

MATHEMATICS FOR YEAR 11 (Fifth Edition) GEOMETRY AND TRIGONOMETRY

Fifth edition - 2009 reprint

page 153 EXERCISE 3C

3 You are given a triangle which has two equal angles at A and C. BD bisects ∠ADC.

Use this figure and congruence only to prove 'the equal angles of a triangle' theorem.

page 200 EXERCISE 3M

7 f -3i + 4j with length $\sqrt{3}$ units

page 274 **EXAMPLE 38** Question and the first line of the solution should read:

If $\cos x = \frac{3}{5}$ and $\frac{3\pi}{2} < x < 2\pi$ find the exact value of $\cos\left(\frac{x}{2}\right)$.

As $\frac{3\pi}{2} < x < 2\pi$ then $\frac{3\pi}{4} < \frac{x}{2} < \pi$ and so, $\cos\left(\frac{x}{2}\right) < 0$.

page 290 REVIEW EXERCISE 4H

59 Show that $(\cos \theta - \sin \theta)^2$ simplifies to $1 - \sin 2\theta$.

page 316 EXERCISE 5B.2

3

page 412 ANSWERS EXERCISE 1B.1

7 b
$$\cos(180 - \theta) = -\cos\theta$$

page 413 ANSWERS EXERCISE 1H

9 $\frac{1}{4}$ 10 **a** 6 cm² **b** 6 cm²

11 a 21.3 cm^2 **b** 30.7 cm^2

page 418 ANSWERS EXERCISE 2H.2 replace answers to question 11 and 12 with:

11
$$(x-2)^2 + (y-3)^2 = 9$$

12
$$2x - y = 5$$

13
$$k = 0$$

14 centre (0, 0), radius $\sqrt{5}$ units, centre (3, -6), radius $4\sqrt{5}$ units, distance between centres is $3\sqrt{5}$ units, point of contact (-1, 2)

4 b 0.429 secs

page 428 ANSWERS EXERCISE 3J.1

9 343.1 kmph, 092.93°

page 430 ANSWERS EXERCISE 30

1 e 52

page 438 ANSWERS EXERCISE 4F.5

4 b
$$\sin \beta = \frac{-\sqrt{21}}{5}$$
, $\sin 2\beta = \frac{-4\sqrt{21}}{25}$

page 438 ANSWERS EXERCISE 4G.1

1 ii (delete b to the left of ii)

iii $y = \tan 2x$

page 439 ANSWERS EXERCISE 4G.3

1 j 1

page 439 ANSWERS EXERCISE 4G.4 answer numbering change: $1\ a$ to $1\ c$

1
$$\mathbf{c}$$
 $\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$

ERRATA

MATHEMATICS FOR YEAR 11 (Fifth Edition) GEOMETRY AND TRIGONOMETRY

Fifth edition - 2007 reprint

page 153 EXERCISE 3C

3 You are given a triangle which has two equal angles at A and C. BD bisects ∠ADC.

Use this figure and congruence only to prove 'the equal angles of a triangle' theorem.

page 200 EXERCISE 3M

7 f -3i + 4j with length $\sqrt{3}$ units

page 274 **EXAMPLE 38** Question and the first line of the solution should read:

If $\cos x = \frac{3}{5}$ and $\frac{3\pi}{2} < x < 2\pi$ find the exact value of $\cos\left(\frac{x}{2}\right)$.

As $\frac{3\pi}{2} < x < 2\pi$ then $\frac{3\pi}{4} < \frac{x}{2} < \pi$ and so, $\cos\left(\frac{x}{2}\right) < 0$.

page 290 REVIEW EXERCISE 4H

59 Show that $(\cos \theta - \sin \theta)^2$ simplifies to $1 - \sin 2\theta$.

page 316 EXERCISE 5B.2

page 354 REVIEW EXERCISE 5H question 18 diagram should be:

page 412 ANSWERS EXERCISE 1A.1

2 c \(\lambda KLM \) is a right angle (within the limitations of measurement)

page 412 ANSWERS EXERCISE 1B.1

7 **b** $\cos(180 - \theta) = -\cos\theta$

page 412 ANSWERS EXERCISE 1E

20 30.78 m

page 413 ANSWERS EXERCISE 1H

9 $\frac{1}{4}$ 10 **a** 6 cm² **b** 6 cm²

11 a 21.3 cm^2 **b** 30.7 cm^2

page 418 ANSWERS EXERCISE 2H.2 replace answers to question 11 and 12 with:

11
$$(x-2)^2 + (y-3)^2 = 9$$

12
$$2x - y = 5$$

13
$$k = 0$$

14 centre (0, 0), radius $\sqrt{5}$ units, centre (3, -6), radius $4\sqrt{5}$ units, distance between centres is $3\sqrt{5}$ units, point of contact (-1, 2)

page 420 ANSWERS EXERCISE 2K.3

4 b 0.429 secs

page 428 ANSWERS EXERCISE 3J.1

9 343.1 kmph, 092.93°

page 430 ANSWERS EXERCISE 30

1 e 52

page 438 ANSWERS EXERCISE 4F.5

4 b
$$\sin \beta = \frac{-\sqrt{21}}{5}$$
, $\sin 2\beta = \frac{-4\sqrt{21}}{25}$

page 438 ANSWERS EXERCISE 4G.1

1 ii (delete b to the left of ii)

 $y = \tan 2x$

page 439 ANSWERS EXERCISE 4G.3

1 j 1

page 439 ANSWERS EXERCISE 4G.4 answer numbering change: 1 a to 1 c

1 **c**
$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

page 441 ANSWERS EXERCISE 5A.3

3 a and e, b and d, c and f, h and j

page 444 ANSWERS EXERCISE 5B.3